VAV SYSTEMS: HOW AIR FLOWS THROUGH THE EQUIPMENT

Matthew Crump, PE Nailor Industries

HTTP://WWW.TECHNICALAIR.COM/

Background

- The purpose of Variable Air Volume (VAV) system is to add controllability to a diversity of occupancies using only one air handling unit.
- Constant volume system are found in homes
 - Either off or on.
 - **IF** you apply a constant volume system to a space with multiple heating/cooling load profiles
 - **THEN** someone will not be comfortable at different times of operation.

Fundamental Components of a VAV System

- Fundamental components include:
 - Air handling unit
 - Primary ductwork
 - Terminal unit
 - Ductwork/air distribution that serves each zone
- Each works to deliver right amount of air to a space to control desired temperature
- Critical to understand
 - How air flows through components of a VAV system
 - How it is controlled to deliver comfort

Air Handling Unit

- Fan in the unit delivers the right amount of air to the system.
 - Controlled with a Variable Frequency Drive (VFD) using a trim and response control sequence
- Air is distributed through the building via ductwork
 - Ultimately arrives in the room as supply air through grilles/diffusers
- Supply air is provided with a path to go back to the air handling unit as return air
 - Supply air passes through return air diffuser in the ceiling into the plenum above the space
 - This air then make its way through the plenum to the air handling unit
 - In the illustration, the mechanical room is open to the plenum. In some instances, there could be transfer ductwork
- Air handling unit also handles required ventilation air for the space
 - These two airflows combine in the mechanical room and go through the air handling unit to start the process all over again

Terminal Units

- Terminal units are connected to the primary supply ductwork
 - Controls airflows to different zones
- Fan and VFD in the air handling unit respond to the needs of the space
 - Provide exact amount of air required
- Terminal unit configurations include:
 - Single duct
 - Parallel fan-powered
 - Series fan-powered units
 - Each has different airflow profiles

Terminal Units: Single Duct Units

- <u>Single Duct terminal units</u> include:
 - Airflow sensor
 - Actuator
 - Control damper
- May also have a heating coil
 - Dependent on system design
- The unit will respond to space thermostat to increase/decrease airflow to maintain set point
- Relies 100% on airflow from the air handling unit

Terminal Units: Parallel Fan Powered Units

- Adds fan that is outside flow of the primary air.
- During cooling:
 - Unit acts the same as a single duct terminal unit
- When heating is required:
 - Primary air reduced to minimum ventilation rate and fan will operate to induce air from plenum
 - Mixture of primary and induced air is then passed through the heating coil and ultimately into the space

Parallel Airflow

Terminal Units: Series Fan Powered Units

- Adds fan that is inside flow of the primary air.
- Fan must be operated simultaneously with AHU
- Airflow through a series unit depends on the control sequence selected
 - Constant Volume
 - Variable Volume

Terminal Units: Series Fan Powered Units Constant Volume Control Sequence

- Unit delivers consistent amount of air throughout the operation of the building
- Amount of primary air and heating modulates in response to calls from thermostat
 - Result is constant volume, variable temperature supply
- Except at max load, fan is continuously inducing air from the plenum

Terminal Units: Series Fan Powered Units Variable Volume Control Sequence

- During cooling:
 - 1. Fan matches the primary airflow
 - Resulting in very little induced air into supply air
- During heating:
 - 1. Primary air reduces to a minimum ventilation rate
 - 2. Fan induces the right amount of plenum air to satisfy the space
 - Result is variable volume, constant temperature operation

Comfortable Choice

AIR SYSTEMS, INC.

- With constant supply of ventilation air
 - There must be a means of relieving the pressurization caused by airflow
- Some air exhausts through restroom fans and kitchen exhaust (if applicable)
- The rest must be either
 - Exhausted directly
 - Allowed to escape through a pressure relief damper
- While some pressurization is good for the building, too much can have a negative effect

Airflow

- Efficient airflow through a building and a VAV system is critical to an operating HVAC system
- Understanding how this equipment works together to maintain comfort in a building is critical to designing the right system for your application

Contact the Experts

- Learn more about Nailor Industries, Inc. Single Duct, Parallel & Series Fan Terminal Units along with their entire air handling/ air distribution line by going to <u>https://nailor.com/products/terminal-units</u>
- Contact the Technical Air Systems' Sales Engineering Team at 973-285-0333 or by email at <u>solutions@technicalair.com</u>

HTTP://WWW.TECHNICALAIR.COM/

